Loading [MathJax]/jax/output/CommonHTML/jax.js
Đăng ký

Bài 27 trang 67 SGK Toán 7 tập 2

Đề bài

Hãy chứng minh định lí đảo của định lí trên : Nếu tam giác có hai đường trung tuyến bằng nhau thì tam giác đó cân.

Hướng dẫn giải

Ta sẽ chứng minh góc B = góc C hoặc AB = AC.

Lời giải chi tiết

Giả sử ∆ABC có hai đường trung tuyến BM và CN cắt nhau ở G.

 G là trọng tâm của tam giác 

 GB = 23BM; GC = 23CN 

Mà BM = CN (giả thiết) nên GB = GC.

Tam giác GBC có GB = GC nên ∆GBC cân tại G

 ^GCB=^GBC

Xét ∆BCN và ∆CBM có: 

BC là cạnh chung

CN = BM (gt)

^GCB=^GBC (cmt)

 Vậy ∆BCN = ∆CBM (c.g.c)

 ^NBC=^MCB 

  ∆ABC cân tại A (đpcm).