Cho \(\mathop {\lim }\limits_{x \to  - \infty } \f...

Câu hỏi: Cho \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{a\sqrt {{x^2} + 1}  + 2019}}{{x + 2020}} = \frac{1}{2};\,\mathop {\lim }\limits_{x \to  + \infty } \left( {\sqrt {{x^2} + bx + 1}  - x} \right) = 2\). Tính \(P = 4a + b\).

A \(32\)

B \(-3\)

C \(2\)

D \(-6\)