Bài 38 trang 56 SGK Toán 9 tập 2
Đề bài
Giải các phương trình:
a) (x−3)2+(x+4)2=23−3x;
b) x3+2x2−(x−3)2=(x−1)(x2−2);
c) (x−1)3+0,5x2=x(x2+1,5);
d) \frac{x(x - 7)}{3} – 1 = \frac{x}{2} - \frac{x-4}{3};
e) \frac{14}{x^{2}-9} = 1 - \frac{1}{3-x};
f) \frac{2x}{x+1} = \frac{x^{2}-x+8}{(x+1)(x-4)}
Hướng dẫn giải
Biến đổi phương trình đưa về các dạng toán quen thuộc để làm
Lời giải chi tiết
a) {\left( {x{\rm{ }}-{\rm{ }}3} \right)^2} + {\rm{ }}{\left( {x{\rm{ }} + {\rm{ }}4} \right)^2} = {\rm{ }}23{\rm{ }}-{\rm{ }}3x
\Leftrightarrow {\rm{ }}{x^2}-{\rm{ }}6x{\rm{ }} + {\rm{ }}9{\rm{ }} + {\rm{ }}{x^2} + {\rm{ }}8x{\rm{ }} + {\rm{ }}16{\rm{ }} = {\rm{ }}23{\rm{ }}-{\rm{ }}3x
\Leftrightarrow {\rm{ }}2{x^2} + {\rm{ }}5x{\rm{ }} + {\rm{ }}2{\rm{ }} = {\rm{ }}0
\Delta = 25{\rm{ - }}16 = 9>0
Khi đó phương trình có 2 nghiệm phân biệt là: {x_1} = \frac{{ - 5 - 3}}{{2.2}} = - 2;{x_2} = \frac{{ - 5 + 3}}{{2.2}} = - \frac{1}{2}
Vậy phương trình đã cho có 2 nghiệm phân biệt.
b) {x^3} + {\rm{ }}2{x^2}-{\rm{ }}{\left( {x{\rm{ }}-{\rm{ }}3} \right)^2} = {\rm{ }}\left( {x{\rm{ }}-{\rm{ }}1} \right)({x^2}-{\rm{ }}2)
\Leftrightarrow {\rm{ }}{x^3} + {\rm{ }}2{x^2}-{\rm{ }}{x^2} + {\rm{ }}6x{\rm{ }}-{\rm{ }}9{\rm{ }} = {\rm{ }}{x^3}-{\rm{ }}{x^2}-{\rm{ }}2x{\rm{ }} + {\rm{ }}2
{\rm{ }} \Leftrightarrow {\rm{ }}2{x^2} + {\rm{ }}8x{\rm{ }}-{\rm{ }}11{\rm{ }} = {\rm{ }}0
\Delta' = 16 + 22 = 38,{x_1} = {\rm{ }}{{ - 4 + \sqrt {38} } \over 2},{x_2} = {{ - 4 - \sqrt {38} } \over 2}
Vậy phương trình đã cho có 2 nghiệm phân biệt.
c) {\left( {x{\rm{ }}-{\rm{ }}1} \right)^3} + {\rm{ }}0,5{x^2} = {\rm{ }}x({x^2} + {\rm{ }}1,5)
\Leftrightarrow {\rm{ }}{x^3}-{\rm{ }}3{x^2} + {\rm{ }}3x{\rm{ }}-{\rm{ }}1{\rm{ }} + {\rm{ }}0,5{x^2} = {\rm{ }}{x^3} + {\rm{ }}1,5x
\Leftrightarrow {\rm{ }}2,5{x^2}-{\rm{ }}1,5x{\rm{ }} + {\rm{ }}1{\rm{ }} = {\rm{ }}0 \Leftrightarrow {\rm{ }}5{x^2}-{\rm{ }}3x{\rm{ }} + {\rm{ }}2{\rm{ }} = {\rm{ }}0;
{\rm{ }}\Delta {\rm{ }} = {\rm{ }}9{\rm{ }}-{\rm{ }}40{\rm{ }} = {\rm{ }} - 31{\rm{ }} < {\rm{ }}0
Phương trình vô nghiệm
d) \frac{x(x - 7)}{3}– 1 = \frac{x}{2} - \frac{x-4}{3}
\Leftrightarrow {\rm{ }}2x\left( {x{\rm{ }}-{\rm{ }}7} \right){\rm{ }}-{\rm{ }}6{\rm{ }} = {\rm{ }}3x{\rm{ }}-{\rm{ }}2\left( {x{\rm{ }}-{\rm{ }}4} \right)
\Leftrightarrow {\rm{ }}2{x^2}-{\rm{ }}14x{\rm{ }}-{\rm{ }}6{\rm{ }} = {\rm{ }}3x{\rm{ }}-{\rm{ }}2x{\rm{ }} + {\rm{ }}8
\Leftrightarrow {\rm{ }}2{x^2}-{\rm{ }}15x{\rm{ }}-{\rm{ }}14{\rm{ }} = {\rm{ }}0;
\Delta {\rm{ }} = {\rm{ }}225{\rm{ }} + {\rm{ }}112{\rm{ }} = {\rm{ }}337>0
{x_1} = {{15 + \sqrt {337} } \over 4},{x_2} = {\rm{ }}{{15 - \sqrt {337} } \over 4}
Vậy phương trình đã cho có 2 nghiệm phân biệt.
e) \frac{14}{x^{2}-9} = 1 - \frac{1}{3-x}. Điều kiện: x{\rm{ }} \ne {\rm{ }} \pm 3
Phương trình được viết lại: \frac{14}{x^{2}-9} = 1 + \frac{1}{x- 3}
\Leftrightarrow {\rm{ }}14{\rm{ }} = {\rm{ }}{x^2}-{\rm{ }}9{\rm{ }} + {\rm{ }}x{\rm{ }} + {\rm{ }}3
\Leftrightarrow {\rm{ }}{x^2} + {\rm{ }}x{\rm{ }}-{\rm{ }}20{\rm{ }} = {\rm{ }}0,
{\rm{ }}\Delta {\rm{ }} = {\rm{ }}1{\rm{ }} + {\rm{ }}4{\rm{ }}.{\rm{ }}20{\rm{ }} = {\rm{ }}81>0
Nên {x_1} = {{ - 1 - 9} \over 2} = - 5;{x_2} = {{ - 1 + 9} \over 2} = 4 (thỏa mãn)
Vậy phương trình có hai nghiệm {x_1} = {\rm{ }} - 5,{\rm{ }}{x_2} = {\rm{ }}4.
f) \frac{2x}{x+1} = \frac{x^{2}-x+8}{(x+1)(x-4)}. Điều kiện: x ≠ -1, x ≠ 4
Phương trình tương đương với:
2x\left( {x{\rm{ }}-{\rm{ }}4} \right){\rm{ }} = {\rm{ }}{x^2}-{\rm{ }}x{\rm{ }} + {\rm{ }}8
\Leftrightarrow {\rm{ }}2{x^2}-{\rm{ }}8x{\rm{ }}-{\rm{ }}{x^2} + {\rm{ }}x{\rm{ }}-{\rm{ }}8{\rm{ }} = {\rm{ }}0
\Leftrightarrow {\rm{ }}{x^2}-{\rm{ }}7x{\rm{ }}-{\rm{ }}8{\rm{ }} = {\rm{ }}0
Có a – b + c = 1 – (-7) – 8 = 0 nên {x_1} = - 1,{x_2} = 8
Vì {x_1} = - 1không thỏa mãn điều kiện của ẩn nên: phương trình có một nghiệm là x = 8.